Hadronic contributions to $(g-2)_{\mu}$ from lattice QCD

Christoph Lehner (BNL)

RBC and UKQCD Collaborations

February 25, 2015 - Third annual BRAIN workshop

Current status of $(g-2)_{\mu}$: 3.6 σ tension (PDG 2013)

After experimental improvement?

Figure shows a_{\mu}^{\rm FNAL~E989} with $\pm 2\sigma_{\rm BNL~E821}$ variation around a_{\mu}^{\rm BNL~E821} ($\sigma_{\rm FNAL~E989}=\sigma_{\rm BNL~E821}/4$)

After experimental improvement?

Need to solidify SM prediction and aim to match $\sigma_{
m FNAL~E989}$

SM prediction (PDG 2013)

Contribution	Central Value $\times 10^{10}$	Uncertainty $\times 10^{10}$
$a_{\mu}^{ m QED}$	11 658 471.895	0.008
$a_{\mu}^{ m EW}$	15.4	0.1
$a_{\mu}^{ m HAD,\ LO\ VP}$	* 692.3	4.2
$a_{\mu}^{\mathrm{HAD,\ HO\ VP}}$	-9.84	0.06
$a_{\mu}^{ m HAD,\ LBL}$	** 10.5	2.6
$a_{\mu}^{ m SM}$	11 659 180.3	4.9
FNAL E989 target		≈ 1.6

^{*} $e^+e^- o$ hadrons (exp) and dispersion integrals; "3.3 σ tension" based on: K. Hagiwara et al.,

J. Phys. G38 (2011) 085003: $a_{\mu}^{\mathrm{HAD,\ LO\ VP}} \times 10^{10}
ightarrow 694.91$

^{**} based on Prades, de Raphael, and Vainshtein 2009 "Glasgow White Paper": QCD model including PS meson contribution; Pauk and Vanderhaeghen Eur.Phys.J. C74 (2014) 8, 3008: include AV,S,T meson poles yields $<1.0\times10^{-10} \text{ shifts in } a_u^{\mathrm{HAD},\ \mathrm{LBL}}$

Outline

The hadronic vacuum polarization

The hadronic light-by-light contribution

Outline

The hadronic vacuum polarization

The hadronic light-by-light contribution

RBC and UKQCD collaboration on the hadronic vacuum polarization

Tom Blum (UConn)

Peter Boyle (Edinburgh)

Luigi Del Debbio (Edinburgh)

Jamie Hudspith (York)

Taku Izubuchi (BNL/RBRC)

Andreas Jüttner (Southampton)

Christoph Lehner (BNL)

Kim Maltman (York/CSSM)

Marina Marinkovic (CERN/Southampton)

Antonin Portelli (Southampton)

The hadronic vacuum polarization (HVP) diagram

Note: there is also a quark-disconnected diagram

HPQCD 2014 (new method for improved statistics):

$a_{\mu}^{s/c}$	dispersion	HPQCD	ETMC	RBC/UKQCD
	+ expt		(prelim.)	(prelim.)
$a_{\mu}^{s} \times 10^{10}$	55.3(8)	53.4(6)	53(3)	52.4(2.1)
$a_{\mu}^{c} \times 10^{10}$	14.4(1)	14.4(4)	14.1(6)	_

arXiv:1411.0569

	a_{μ}^{s}	a^c_μ
Uncertainty in lattice spacing (w_0, r_1) :	1.0%	0.6%
Uncertainty in Z_V :	0.4%	2.5%
Monte Carlo statistics:	0.1%	0.1%
$a^2 \rightarrow 0$ extrapolation:	0.1%	0.4%
QED corrections:	0.1%	0.3%
Quark mass tuning:	0.0%	0.4%
Finite lattice volume:	< 0.1%	0.0%
Padé approximants:	< 0.1%	0.0%
Total:	1.1%	2.7%

Impressive progress but HVP a solved problem? No. Keep in mind total $a_{\mu}^{c+s+d+u} \times 10^{10} \approx 700$. Need to control light-quark case.

Challenges for $a_{\mu}^{u,d}$:

Statistics: noise problem, new methods for s, c contribution do not address main issue

Disconnected diagram: estimated to be O(1%) of the connected contribution, see Meyer 2013

Isospin-breaking: need to include strong and EM isospin-breaking

Blum 2002

$$=\int_0^\infty d(q^2)f(q^2)igg(rac{1}{q^2}igg)igg(rac{1}{q^2}igg)igg(-(q o 0)igg)$$
 $=\hat\Pi(q^2)$

Dominant contribution from $q^2 \approx m_\mu^2$. Typically very small compared $2\pi/L$.

Source of noise for small q:

Traditional estimators do not satisfy configuration-by-configuration the properties that hold after quantum average such as $\left\langle \Pi_{\mu\nu}(q^2=0) \right\rangle = 0$, $\left\langle \operatorname{Im}\Pi_{\mu\nu}(q^2) \right\rangle = 0$.

$$\Pi_{\mu\nu}(x) = \langle V_{\mu}^{\text{cons.}}(x) V_{\nu}^{\text{loc.}}(0) \rangle$$

$$C(t) = \sum_{\vec{x}} \Pi_{\mu\nu}(x_0 = t, \vec{x})$$
 for $\mu = 1, 2, 3$

Noise due to cancellation for small q^2 region ($\approx \sum_t C(t)$)

How do new methods such as the HPQCD method address the $q \rightarrow 0$ noise problem?

Use estimator for $\Pi_{\mu\nu}(q^2)$ and $\Pi(q^2)$ that has proper $q\to 0$ limit configuration-by-configuration:

$$\left\langle \hat{\Pi}(q^2) \right\rangle = \left\langle \sum_t \operatorname{Re} \left(\frac{exp(iqt) - 1}{q^2} + \frac{1}{2}t^2 \right) \operatorname{Re} C_{\mu\mu}(t) \right\rangle$$
 (1)

(CL lattice 2014, slight modification of Eq. (81) in Bernecker and Meyer 2012)

The HPQCD moments method is a Taylor expansion of the above estimator for small q.

But: much less important for light quarks for which different noise dominates

Data: 80 point-source measurements on RBC/UKQCD 48c physical point lattice ($a^{-1}=1.73$ GeV); Method of Eq. (1) with $\sum_t \to \sum_{t \le T_{\max}}$; Note: y-scale of strange/light plots!

Status of lattice HVP determinations versus precision goal

► Strange- and charm-quark contributions can be determined at experimental precision goal right now (improved estimators)

 Light quarks require much more statistics (using long-distance modeling one can carefully treat statistical for systematic errors); HPQCD/MILC, RBC/UKQCD, and others are working on this

 Still missing: disconnected diagrams (expected to be small) and isospin-breaking effects

Outline

The hadronic vacuum polarization

The hadronic light-by-light contribution

RBC and UKQCD collaboration on the hadronic light-by-light contribution

Tom Blum (UConn)

Norman Christ (Columbia)

Masashi Hayakawa (Nagoya)

Taku Izubuchi (BNL/RBRC)

Luchang Jin (Columbia)

Christoph Lehner (BNL)

Norikazu Yamada (KEK)

The hadronic light-by-light contribution

A long-standing problem of interest for our collaboration

First methodology paper 10 years ago: Blum, Hayakawa, Izubuchi, Yamada: PoS(LAT2005)353 (QCD+quenched QED)

Noise control: impose quantum-average properties config-by-config $(e
ightarrow -e, \ p
ightarrow -p)$

First a-priori lattice determination:

Blum et al., Phys.Rev.Lett. 114 (2015) 1, 012001: connected diagrams only, $m_{\pi}=329$ MeV, $a^{-1}=1.73$ GeV, $L=24^3\times64$

$$a_\mu = F_2(0)$$

Imperfections that need to be addressed:

Omission of disconnected diagrams

► Control of large QED FV errors

► Control of excited state contributions

Computation at physical pion mass

Inclusion of QCD+dynamical QED Blum, Hayakawa, and Izubuchi, PoS(LATTICE 2013)439

Other collaborations are generating QCD+dynamical QED ensembles: FNAL/MILC (Zhou and Gottlieb, PoS LATTICE2014 (2014) 024), BMW

Re-examine statistics

QCD+QED simulations suffer from large statistical uncertainties. We explore a different method here:

Same-cost comparison: red data: old method QCD+quenched QED, black: new stochastic sampling method (Luchang Jin)

Excited states

As we go to larger volumes, excited state contributions of $\mu + \gamma$ etc. may be enhanced

► Lattice QED perturbation theory converges well and can be used to construct improved source

▶ We are exploring this with the *PhySyHCAI* system that also was used for a free-field test of Blum et al. 2014

Finite-volume errors

General FV problem of QCD+QED simulations. However, for HVP computations this was no issue (see HPQCD 2014 error budget):

	a_{μ}^{s}	a^c_μ
Uncertainty in lattice spacing (w_0, r_1) :	1.0%	0.6%
Uncertainty in Z_V :	0.4%	2.5%
Monte Carlo statistics:	0.1%	0.1%
$a^2 \rightarrow 0$ extrapolation:	0.1%	0.4%
QED corrections:	0.1%	0.3%
Quark mass tuning:	0.0%	0.4%
Finite lattice volume:	< 0.1%	0.0%
Padé approximants:	< 0.1%	0.0%
Total:	1.1%	2.7%

Benefit of treating the valence photon in infinite volume

For LBL a similar decomposition would be much more challenging

QCD+QED: importance of valence effects

Example: dynamical QCD+QED contribution of BMW 2014

Neutron-proton mass splitting (in figure for artificially large e^2)

Dashed line is obtained from free fermion plus QED one-loop finite-volume pole mass shift.

Bloch's theorem and QCD+QED simulations

Valence fermions Ψ living on a repeated gluon background U_{μ} with periodicity L_1 , L_2 and vectors $\hat{L}_1=(L_1,0)$, $\hat{L}_2=(0,L_2)$

Let ψ^θ be the quark fields of your finite-volume action with twisted-boundary conditions

$$\psi_{\mathsf{x}+\mathsf{L}}^\theta = \mathsf{e}^{\mathsf{i}\theta}\psi_\mathsf{x}^\theta \,.$$

Then one can show that

$$\left\langle \Psi_{x+nL}\bar{\Psi}_{y+mL}\right\rangle = \int_0^{2\pi} \frac{d\theta}{2\pi} e^{i\theta(n-m)} \left\langle \psi_x^\theta \bar{\psi}_y^\theta \right\rangle \,, \tag{2}$$

where the $\langle \cdot \rangle$ denotes the fermionic contraction in a fixed background gauge field $U_{\mu}(x)$. (4d proof available.)

This specific prescription produces exactly the setup of the previous page, it allows for the definition of a conserved current, and allows for a prescription for flavor-diagonal states.

Status of lattice hadronic light-by-light determination:

The experimental target precision needed for the light-by-light contribution is substantially less than for the HVP contribution: $\approx 10-15\%$

Blum et al., Phys.Rev.Lett. 114 (2015) 1, 012001: first ab-initio computation

Work on its imperfections is in progress:

- Using the improved stochastic method to compute the connected contribution at the physical pion mass
- ► Exploring excited-state and finite-volume effects
- Exploring optimal strategies to include the disconnected diagrams

Other collaborations have started similar efforts (FNAL/MILC). The lattice community is actively putting its focus on this important quantity.

Thank you